Analytical-Approximate Solution for Nonlinear Volterra Integro-Differential Equations
Authors
Abstract:
In this work, we conduct a comparative study among the combine Laplace transform and modied Adomian decomposition method (LMADM) and two traditional methods for an analytic and approximate treatment of special type of nonlinear Volterra integro-differential equations of the second kind. The nonlinear part of integro-differential is approximated by Adomian polynomials, and the equation is reduced to a simple equations. The proper implementation of combine Laplace transform and modified Adomian decomposition method can extremely minimize the size of work if compared to existing traditional techniques. Moreover, three particular examples are discussed to show the reliability and the performance of method.
similar resources
analytical-approximate solution for nonlinear volterra integro-dierential equations
in this work, we conduct a comparative study among the combine laplace transform and modied adomian decomposition method (lmadm) and two traditional methods for an analytic and approximate treatment of special type of nonlinear volterra integro-differential equations of the second kind. the nonlinear part of integro-differential is approximated by adomian polynomials, and the equation is red...
full textApproximate solution of system of nonlinear Volterra integro-differential equations by using Bernstein collocation method
This paper presents a numerical matrix method based on Bernstein polynomials (BPs) for approximate the solution of a system of m-th order nonlinear Volterra integro-differential equations under initial conditions. The approach is based on operational matrices of BPs. Using the collocation points,this approach reduces the systems of Volterra integro-differential equations associated with the giv...
full textAn Approximate Method for System of Nonlinear Volterra Integro-Differential Equations with Variable Coefficients
In this paper, we apply the differential transform (DT) method for finding approximate solution of the system of linear and nonlinear Volterra integro-differential equations with variable coefficients, especially of higher order. We also obtain an error bound for the approximate solution. Since, in this method the coefficients of Taylor series expansion of solution is obtained by a recurrence r...
full textApplication of the block backward differential formula for numerical solution of Volterra integro-differential equations
In this paper, we consider an implicit block backward differentiation formula (BBDF) for solving Volterra Integro-Differential Equations (VIDEs). The approach given in this paper leads to numerical methods for solving VIDEs which avoid the need for special starting procedures. Convergence order and linear stability properties of the methods are analyzed. Also, methods with extensive stability r...
full textNumerical solution of nonlinear fractional Volterra-Fredholm integro-differential equations with mixed boundary conditions
The aim of this paper is solving nonlinear Volterra-Fredholm fractional integro-differential equations with mixed boundary conditions. The basic idea is to convert fractional integro-differential equation to a type of second kind Fredholm integral equation. Then the obtained Fredholm integral equation will be solved with Nystr"{o}m and Newton-Kantorovitch method. Numerical tests for demo...
full textan approximate method for system of nonlinear volterra integro-differential equations with variable coefficients
in this paper, we apply the differential transform (dt) method for finding approximate solution of the system of linear and nonlinear volterra integro-differential equations with variable coefficients, especially of higher order. we also obtain an error bound for the approximate solution. since, in this method the coefficients of taylor series expansion of solution is obtained by a recurrence r...
full textMy Resources
Journal title
volume 04 issue 03
pages 217- 228
publication date 2015-08-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023